Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family

نویسنده

  • Elvan Ceyhan
چکیده

We use the domination number of a parametrized random digraph family called proportional-edge proximity catch digraphs (PCDs) for testing multivariate spatial point patterns. This digraph family is based on relative positions of data points from various classes. We extend the results on the distribution of the domination number of proportional-edge PCDs, and use the domination number as a statistic for testing segregation and association against complete spatial randomness. We demonstrate that the domination number of the PCD has binomial distribution when size of one class is fixed while the size of the other (whose points constitute the vertices of the digraph) tends to infinity and asymptotic normality when sizes of both classes tend to infinity. We evaluate the finite sample performance of the test by Monte Carlo simulations, prove the consistency of the test under the alternatives, and suggest corrections for the support restriction on the class of points of interest and for small samples. We find the optimal parameters for testing each of the segregation and association alternatives. Furthermore, the methodology discussed in this article is valid for data in higher dimensions also.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

متن کامل

On the distribution of the domination number of a new family of parametrized random digraphs

We derive the asymptotic distribution of the domination number of a new family of random digraph called proximity catch digraph (PCD), which has application to statistical testing of spatial point patterns and to pattern recognition. The PCD we use is a parametrized digraph based on two sets of points on the plane, where sample size and locations of the elements of one is held fixed, while the ...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

The Italian domatic number of a digraph

An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...

متن کامل

The Use of Domination Number of a Random Proximity Catch Digraph for Testing Spatial Patterns of Segregation and Association

Priebe et al. (2001) introduced the class cover catch digraphs and computed the distribution of the domination number of such digraphs for one dimensional data. In higher dimensions these calculations are extremely difficult due to the geometry of the proximity regions; and only upper-bounds are available. In this article, we introduce a new type of data-random proximity map and the associated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009